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The dynamics of surface diffusion describes the motion of a surface with its
normal velocity given by the surface Laplacian of its mean curvature. This flow
conserves the volume enclosed inside the surface while minimizing its surface
area. We review the axisymmetric equilibria: the cylinder, sphere, and the
Delaunay unduloid. The sphere is stable, while the cylinder is long-wave
unstable. A subcritical bifurcation from the cylinder produces a continuous
family of unduloid solutions. We present computations that suggest that the
stable manifold of the unduloid forms a separatrix between states that relax to
the cylinder in infinite time and those that tend toward finite-time pinchoff. We
examine the structure of the pinchoff, showing it has self-similar structure, using
asymptotic, numerical, and analytical methods. In addition to a previously
known similarity solution, we find a countable set of similarity solutions, each
with a different asymptotic cone angle. We develop a stability theory in simi-
larity variables that selects the original similarity solution as the only linearly
stable one and consequently the only observable solution. We also consider
similarity solutions describing the dynamics after the topological transition.

KEY WORDS: surface diffusion; similarity solution; Pinchoff; linear stability.

1. INTRODUCTION

In a closed isotropic system surface diffusion preserves the volume of the
solid while reducing its surface area, analogous to the classical Rayleigh
instability of a cylinder of a fluid under capillary forces. For both problems,
cylindrical surfaces pinchoff to form chains of spheres that minimize the
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In this paper we investigate the dynamics of these surfaces, concentrating
on the dynamics of pinchoff, using a combination of numerical, analytical
and asymptotic techniques.

Based on the earlier work of Herring [Her51], Mullins derived equa-
tion (1.1) in [Mul57] and recently reviewed the detailed physics of mass
transport on surfaces in [ Mul95 ]. Mullins' derivation, which we review in
Section 2, assumes that the mean-free path of the diffusing particles is small
compared to the sample size. Cahn and Taylor [CT94] generalize this
model to include both anisotropy and cases where surface diffusion is much
faster than the attachment kinetics (i.e., the limit of large mean-free path).
The reader is also referred to [CFM96, CFM95] for some discussion of
the model.

Motion via surface diffusion preserves volume and dissipates surface
area [CT94]. In studying capillary instability in fluid dynamics, Rayleigh
first addressed the problem of minimizing surface area for a fixed volume.
Surfaces of constant mean curvature are both extrema for the capillary
minimization problem and steady states for the surface diffusion problem.
In Section 2, we show that those surfaces that minimize surface area are
precisely the same as the linearly stable equilibria under surface diffusion.
This allows us to use previously known results [Fin86, Vog87, Vog89,
FV92, Zho93] for the capillary minimization problem to classify steady
states for the surface diffusion problem.

As we show in Section 3 for the axisymmetric case, Eq. (1.1) yields a
fourth-order nonlinear diffusion equation for motion of the surface. Mullins
original investigation [Mul57] of surface diffusion concentrated on under-
standing the appearance of a groove at a grain boundary of a heated
polycrystalline material. He derived a self-similar solution of a linearized
near-planar version of (1.1) where lengths scale as (time)l/4, reflecting the

surface area per volume. This phenomenon is observed in many physical
systems with application to such fields as integrated circuit technology,
annealing, and sintering. When a solid is heated, atoms at the outer surface
can become mobile at a temperature well below the melting temperature.
Such atoms diffuse to form a thermodynamically lower energy configura-
tion and, in the process, cause a mass flux from regions of high surface
energy to lower surface energy. When the characteristic mean-free path of
a surface atom is small compared to the characteristic dimension of the
sample, the average normal velocity U of the surface is proportional to the
surface Laplacian of the sum of the principal curvatures (the normalized
mean curvature),
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fourth-order diffusive nature of the problem. In a subsequent investigation
[Mul59] he estimated the rate at which perturbations to a planar surface
flatten, again finding a (time)1/4 self-similar rescaling of perturbation
amplitudes and widths.

For the general surface diffusion problem, very few analytical results
are known. Due to the lack of a maximum principle, at best, we expect
smooth solutions to exist only locally in time. Some results are known for
the analogous flow of a curve in a plane [BDR84, AL98, EG97, CT94].
More recent results for the surfaces in W [EMS97, EMS98] prove local
existence, regularity, and local convergence to the sphere.

The long time evolution of a surface evolving via (1.1) can be limited
by topological changes of surface, including self-intersections of the surface
(local "coalescence") in either two or three dimensions or the pinchoff of a
connected tube-like structure in three dimensions. Coalescence of initially
separated parts of the surface may occur due to the locality of the surface
dynamics and lack of a maximum principle [CT94]. When such coalescen-
ces occur in three dimensions, as in the case of two spherical surfaces
touching, the ensuing dynamics can be quite complex [Egg98]. In the case
of pinchoff, previous numerical work [NM65a, NM65b, SM82, MS79,
CFM96, CFM95] suggests that axisymmetric tubes can form such singu-
larities leading to changes in topology. Although one can suggest ways to
continue the solution after the topology change [ CFM96, CFM95, WMVD98],
uniqueness of this continuation is not known. Cahn and Taylor [CT94]
discuss various strategies for mollifying these difficulties.

Nichols and Mullins [NM65a, NM65b] investigated numerically the
evolution of axisymmetric solutions of the surface diffusion equation in
connection with various applications. They derive the Rayleigh criteria for
stability of a cylinder; namely that it is unstable to perturbations with
wavelengths greater than 2n times itstradius. They suggest that this
Rayleigh instability leads to a pinchoff of the cylinder. These ideas were
studied further by Marinas and Sekerka [MS79, SM82]. In Section 3 we
take these ideas one step further. After reviewing the stability theory of
Nichols and Mullins for the cylinder and sphere, where the eigenvalues can
be computed analytically, we consider a third class of axisymmetric equi-
libria, the unduloid. We show that the unduloids form a branch of solu-
tions that bifurcate subcritically from the cylinder at the critical cylinder
length of 2nr. Each unduloid has a stable manifold of codimension one that
divides phase space into states that evolve towards the cylinder or evolve
towards a finite-time pinchoff.

Coleman, Falk and Moakher [CFM96, CFM95] demonstrated numer-
ically that a cylinder subject to an axially symmetric perturbation can show
pinchoff in finite time. The conical nature of this pinchoff is evident in their
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computations. In addition, they use surface "surgery" to numerically change
the topology of the surface near pinchoff in order to compute a solution
after pinchoff. They follow the evolution from a perturbed cylinder,
through pinchoff, to a series of disconnected spheres that is clearly a local
minimizer of surface area. Their numerical work suggests a universal cone
angle upon pinchoff, however they compute on fixed uniform grids so it is
difficult to measure precisely the cone angle near pinchoff or the precise
dynamics of the pinchoff, which occurs on decreasingly smaller scales.

Since the work of Coleman, Falk and Moakher [CFM96, CFM95],
Wong, Miksis, Voorhees, and Davis studied surface diffusion in a series of
four papers [WMD97, WVMD97, MVM+96, WMVD98]. In the fourth
paper [ WMVD98 ] they examine the self-similar axisymmetric pinchoff of
a cylinder. The surface diffusion equation is rescaled into self-similar coor-
dinates, where lengths are scaled as the fourth root of the time to pinchoff.
They numerically compute a solution of the resulting ODE, using a shooting
method. Their solution has a half-cone angle of 46.04°, which compares
very favorably with the previous studies [NM65a, CFM96, SM82]. This
result can be thought of as the starting point for the present study.

Self-similarity in topological transitions for interfaces has become the
topic of much research during the past decade [Kad97]. Eggers [Egg93]
shows that droplet pinchoff has a universal self-similar form. Subsequent
work of Brenner et al. [BLS96] found a countably infinite set of such
similarity solutions, with the "ground state" given by Eggers. This
prompted us to look for the same structure in the problem of self-similar
pinchoff via surface diffusion. We show, in Section 4, that there are indeed
a countably infinite number of similarity solutions describing pinchoff. Our
"ground state" is the similarity solution found in [ WMVD98], We compare
the results for the similarity solutions with fully nonlinear computations of
the surface evolution equation. In order to resolve the scaling structure of
the pinchoff over many lengthscales, we use a self-similar adaptive mesh-
refinement procedure similar to that used in [Ber96]. We find that regard-
less of the initial condition, the computations always show pinchoff that
has the local structure of the "ground state."

In Section 5, we explain why the ground state is the only observable
one in the computations of Section 4. Via a linear stability analysis in
similarity variables, we show that, modulo eigenvalues associated with time
and space translation in the original system, that the ground state is the
only linearly stable similarity solution. We also show that this state is
linearly stable to nonaxisymmetric perturbations, making it a likely
candidate to describe nonaxisymmetric pinchoff of tubes. In Section 6, we
consider the existence and stability of solutions after pinchoff. We find a
continuous family of stable similarity solutions parametrized by the far-field
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with a normal velocity (2.2) equal to the surface Laplacian of the mean
curvature, H, where n is an inward pointing surface normal. For the pur-
pose of this section, we consider f to be a compact, connected, oriented
Riemannian manifold without boundaries. This includes the case of an axi-
symmetric surface, periodic along the axis of symmetry, which is the subject
of the remaining sections of the paper. However many of the results stated
here also easily generalize to surfaces with boundaries, such as those that
model the surface diffusion of a solid film on an impermeable substrate (see,
for example, [WMD97, MVM+96, Mul95]). This is particularly relevant

3 We refer to the normalized mean curvature throughout the paper as simply the mean cur-
vature, although it is actually twice the average (mean) of the principal curvatures. We use
the convention that curvature is positive on spheres, consistent with [CFM96, CFM95].

The surface of the solid L(px,p2, t) is parametrized (at least locally)
by two Lagrangian surface coordinates px, p2 and evolves in time, t,

where without loss of generality we assume the mobility (constant of pro-
portionality) to be one. Conservation of mass in a test volume on the surface
[Ari62] dictates that the normal velocity, U, of the surface equals the
divergence of the flux,

cone angle. These results suggest that the continuation after pinchoff is
unique and stable.

2. FORMULATION OF MODEL

In this section we derive some basic identities for motion by surface
diffusion. Consider a solid occupying a volume Q with boundary dQ.
Associated with each point on the surface are two principal curvature
k1 and K2 whose sum is H, the normalized mean curvature,3 and whose
product is J, the Gaussian curvature. If the chemical potential is propor-
tional to the surface area, then the change in chemical potential due to the
displacement of a single surface atom is proportional to the mean curva-
ture, H. Thermodynamically, the surface atoms move towards the potential
minimum. Consequently, the volume flux of surface atoms Q is proportional
to the surface gradient of the curvature,
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Substituting the normal velocity (2.2), and applying the divergence
theorem yields,

Hence

To compute this time derivative on the right hand side, we note, from (2.3),
that moving the interface from f to f+Un dt changes an infinitesimal
surface element dS by ([Ari62], Chap. 10)

where the initial volume, V0, is specified by the initial condition. The rate
of change of the surface area A(t) is

Substituting (2.2), and applying the surface divergence theorem yields con-
servation of volume,

for understanding the stability of conducting traces on an insulating sub-
strate for integrated circuits [MVM+96]. For the geometric identities used
below, the reader is directed to the book of Aris [Ari62]. Later in this
paper, we restrict ourselves to surfaces that are axisymmetric and periodic
in the direction of the axis of symmetry.

2.1. Volume Conservation and Area Dissipation

We begin by reviewing the fact that evolution via surface diffusion
conserves volume and dissipates surface area [CT94]. The rate of change
of the volume, V(t), of Q is the integral of the normal velocity over the
surface ([Ari62], p. 178),
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From Schwarz's inequality, it follows that the surface diffusion evolution,
U= VJH, maximizes the rate of surface area dissipation among all velocity
laws of the same L2 norm. This leads to Taylor and Cahn's [CT94]
recognition of this flow as a gradient flow in the H-1 norm.

a positive definite bilinear form on the zero-mean functions w and v.
Using this inner product, surface area dissipation (2.7) can be written

as

Now define the H-1 inner-product, on the surface dQ, of two zero-mean
functions w, v, as

has a unique zero mean potential, Pw, such that [War83]

which shows that, for all surface diffusion motion, surface area is non-
increasing. Moreover, the surface area is strictly decreasing for all surfac
except equilibrium surfaces of constant mean curvatu.

2.2. The H–1 Inner-Product

We gain some insight into the dynamics and stability of perturbed
equilibria by formulating the surface diffusion problem as a gradient flow
in an H–1 inner-product. This method arises in Cahn-Hilliard type
problems and was first extended to the motion of surfaces by Cahn and
Taylor [CT94]. Our presentation follows the discussion in Taylor and
Cahn [TC94].

First we note that any zero mean function w(p1, p2) on the surface,
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2.3. Equilibrium Shapes and Their Linear Stability

From the dissipation of surface area (2.7), equilibrium shapes have
constant mean curvature, H = H0. In this paper, we discuss the axisym-
metric equilibrium surfaces (cylinders, spheres and Delaunay unduloids).
In order to understand the dynamics of axisymmetric surfaces, we must
examine their stability under perturbation.

Suppose r 0 (p 1 , P2) is an equilibrium surface with constant mean cur-
vature, H(fo) = Ho. Any small surface deformation can be measured by
the displacement in the normal direction,

To linear order in y, volume conservation imposes the restriction

To linearize the surface diffusion evolution (2.3)

about the steady state f0, a surface of constant mean curvature, we first
compute the linear variation in the mean curvature due to the perturbation
yn (cf. [SB95, Dre90])

where K1 and K2 are the principal curvatures of H0. The surface Laplacian
V2

s depends on the perturbation y, however since V2
sH0 = 0 identically for

any constant H0, the leading order contribution of H2
s H due to the pertur-

bation of the Laplacian enters at 0(y2). Consequently the linearization of
the surface diffusion equation (2.14) about Fo is:

In Section 3 we use (2.16) to compute the spectrum of the linearization
about axisymmetric surfaces.

One advantage of working in the surface coordinates is now evident
—the linearized operator is self-adjoint in the H–1 inner-product. This can



where, again, y is a zero-mean perturbation.
The linear operator has several zero eigenvalues, associated with

physical symmetries of the problem, in particular infinitesimal translations
and rotations. If Ao is strictly greater than zero, the equilibrium surface of
constant mean curvature, f 0 , is linearly unstable.

In the next subsection we use the formula for the Rayleigh quotient to
show that stable surfaces are the ones that are local minimizers of surface
area.

2.4. Stability of Equilibria and Capillary Minimization

In the previous subsection, we reviewed the fact that evolution via
surface diffusion minimizes surface area while conserving volume. The only
equilibrium surfaces are those of constant mean curvature. Thus the only
stable equilibria are constant mean curvature surfaces that locally minimize
surface area. We now address the analytical connection between the linear
stability of equilibria under surface diffusion and the following:

Capillary Minimization Problem: Given a fixed interior volume N0,
find the surfaces that extremize surface area A and determine which are
local minimizers of surface area.

Like the equilibrium surfaces for evolution via surface diffusion, the
extremal surfaces in the capillary minimization problem have constant
mean curvature (cf. [Fin86]), a fact that we rederive below. We also show
that for the capillary minimization problem, the second variation of surface
area is an expression that is equivalent to the Rayleigh quotient in (2.18),
used to compute stability of equilibria for surface diffusion. Thus there is

can now be analyzed via a Rayleigh quotient [But68]. Because the
operator is self-adjoint and the surface is compact, the spectrum is real and
discrete. If the eigenvalues are ordered Xo > 1, · · · =̂ Xn · · ·, then a Rayleigh
quotient gives the largest eigenvalue

be shown by a straightforward computation. Consequently, the eigenvalues
of £ are real, generalizing an observation of Wong et al. [WMVD98,
WVMD97] for certain special geometries.

The eigenvalue problem
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a clear one-to-one correspondence between the stability of equilibria under
surface diffusion, and the nature of the extrema for the capillary minimiza-
tion problem. This allows us to use well known results for the capillary
minimization problem to completely classify all equilibrium surfaces for the
surface diffusion problem.

Following Vogel [ Vog87], we solve the capillary minimization problem
via the calculus of variations. Consider an extremal surface f0 for the
capillary minimization problem, perturbed so that the interior volume is
conserved:

where yx and y2 represent arbitrary perturbations to the surface.
Applying the volume constraint, we find

where we employ (2.6) to expand the surface element. At leading order we
verify that V(f0) = Vo. At 0(e), yt is restricted to have zero mean,

corresponding to a vanishing perturbation to the volume (2.13). At O(e2),
y2 compensates for the second-order contribution to the volume from y1,

where a2 is an arbitrary zero-mean function.
Substituting (2.19) into the surface area functional and expanding

yields

where
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and we use (2.6) and (2.15) to expand the surface area element and the
mean-curvature respectively.

At 0(s), we derive the conditions for f0 to be extremal, namely that
A0 vanishes,

where y1 is an arbitrary perturbation that satisfies the zero-mean condition
(2.21). From this we deduce the well-known result that extremal surfaces
for the capillary minimization problem have constant mean curvature,
H = H0, just as we deduced for the steady solutions of the surface diffusion
problem.

At O(e2), substituting for y2 from the volume constraint (2.22) and
applying the divergence theorem yields

where y1 is a zero-mean function. The surface f0 is a local minimizer of
surface area if A2 > 0 for all yt. Moreover, the set of perturbations where
A2 vanishes correspond exactly to infinitesimal translation and rotation
symmetries.

Comparing (2.25) with equation (2.18), we recognize A2 as minus half
the numerator of the Rayleigh quotient. Consequently, if A2 is negative, the
extremal surface is unstable under the action of surface diffusion. More-
over, the space of perturbations for which A2 vanishes is exactly the null-
space of L, the linearized surface diffusion operator, both of which may be
associated with the physical symmetries of the problem. Consequently, we
conclude that a constant mean curvature surface is linearly stable under
evolution via surface diffusion if and only if it is a local minimizer for the
volume-constrained capillary problem.

This fact means that we can use the results of Vogel, Finn and Zhou
[Vog87, Vog89, FV92, Zho93], for the capillary minimization problem, to
classify the equilibrium surfaces for surface diffusion and their stability. In
particular, this tells us that spheres are always linearly stable under surface
diffusion and cylinders are always short-wave stable and long-wave
unstable (with the critical wavelength equal to 2nr, where r is the radius
of the cylinder). A third axisymmetric surface, the Delaunay unduloid
[BSS94, Del41], is a saddle point for the capillary minimization problem.
Thus, we know that the unduloids are all linearly unstable under evolution
via surface diffusion.
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Fig. 1. (a) The geometry for cylinder approaching axisymmetric pinch-off. (b) Cross-sections
of axisymmetric surfaces of constant mean curvature of equal volume on a finite interval of
length L; a cylinder, one period of a Delaunay unduloid of revolution, and two hemispheres
(from top to bottom, respectively).

Section 3 addresses in detail the linear and nonlinear stability of equi-
libria for the axisymmetric surface diffusion problem. In Section 3.1, we
review the linear stability calculation of the well known axisymmetric
examples, the cylinder and the sphere. For these examples, the full spec-
trum of the linear operator in (2.16) can be computed analytically. Also in
that section, using numerical computation via inverse iteration, we com-
pute the most unstable mode of the the linearization about the Delaunay
unduloids. In Section 3.2 we show that for surface diffusion, the Delaunay
unduloids form an unstable branch of solutions that bifurcates subcritically
from the cylinder and reconnects to the sphere in a singular limit, involving
a change of topology.

3. DIFFUSION OF AXISYMMETRIC SURFACES

In this section, we introduce the equation of motion for an axisym-
metric surface that is a radial graph of a function r = r(z) of the axial coor-
dinate z (see Fig. la). There are three families of equilibria for which the
function r is periodic in z: (see Fig. lb), the cylinder, the Delaunay unduloid,
and the sphere.4 This section concerns the dynamics of solutions near these
equilibrium states. First, we review the linear stability of these surfaces of
revolution. Then, via bifurcation theory and numerical computations, we
explore the dynamics near the unduloid surface, showing that it divides

4 Note that the islolated sphere is a special case; it is not topologically equivalent to the cylin-
der or the unduloid on the interval, however it arises naturally as an extremum in the
capillary minimization problem and as the limiting surface of the family of unduloids.
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phase space into states that eventually relax to the cylinder and states that
undergo a topological transition through a pinch-off singularity.

Consider the graph of a function r = r(d, z, t) of the axial coordinate z
and the angular coordinate 6. In these coordinates, the equation of motion
(2.3) reduces to

where the surface Laplacian is

and the mean curvature is

For the case of axisymmetric surfaces, r = r(z, t), (3.1)–(3.3) reduces to

where the mean curvature, H, is the sum of the azimuthal principal cur-
vature Kt and the axial principal curvature k2:

Recall from Section 2 that equilibria are surfaces of constant mean
curvature. In cylindrical coordinates the surface of the sphere is
r = y/r2 — z2, while the cylinder is trivially r = r. The Delaunay unduloids
r = ru(z), are more general solutions of the axisymmetric constant mean
curvature equation:

where the left hand side of (3.6) is an equivalent form of the curvature in
(3.5). Equation (3.6) is scale invariant under (r, z,Ho->ar,az, Ho/a) and
translation invariant, z^z + b, hence without loss of generality, we can
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Fig. 2. The family of unduloid arcs with limiting cylinder and sphere.

obtain all unduloids by imposing the initial conditions r(0) = r, r,(0) = 0
over a range of values for Ho. Note that the cylinder r(z) = z is recovered
as a solution of (3.6) for H0 = 1/r and the sphere of radius r is obtained in
the limit that H -> 2/r (see Fig. 2). The unduloids are a continuous family
of intermediate solutions for l / r < ^ ^ 2 / r .

3.1. Linear Stability of Equilibria

In Section 2.3 we showed that the linearization of surface diffusion
about a steady state is

The linear operator L is self-adjoint with respect to the H–1 inner product
so all of its eigenvalues are purely real. In Section 2.4 we showed that the
stability of surface diffusion equilibria can be computed directly by solving
the capillary minimization problem [Vog87, Vog89]. We now review the
analytic calculation of the spectrum of the linearized operator for the
sphere and cylinder solutions [NM65a, NM65b]. This calculation exploits
the fact that the two principal curvatures, k1 and k2, are constant. We then
numerically compute the stability of the unduloid, showing that, as the
unduloid approaches the cylinder, the most unstable eigenvalue tends
towards zero, while as it approach the sphere, this eigenvalue blows up.

Consider a general infinitesimal perturbation of the form r(z, 0, t) ~
r(z) + ef(z, 9) eXt. Then the perturbation in the normal direction to the sur-
face is ef(z, 6) ex'jj\ +r2

:. Thus the eigenvalue problem for (3.7) reduces to



Axisymmetric Surface Diffusion 739

where the surface Laplacian on r(z) is

Stability of the Cylinder. Consider the stability of cylinder
r(z) = r, with K1 — \jf and K2 = 0, to L-periodic perturbations. The
Laplacian (3.9) reduces to the constant coefficient operator V2 = dzz +
r-2dee yielding solutions of (3.8) in terms of the eigenmodes of V2

[NM65b],

for n, m = 0, 1, 2,.... Note that the n = m = 0 mode corresponds to a change
of volume and is excluded by condition (2.13). The ro, i(z) mode is
neutrally stable and corresponds to translations of the surface perpendicu-
lar to the cylindrical axis. More importantly, the r1,0(z) mode is long-wave
unstable for cylinders with L > 2nr, a result analogous to the well-known
Rayleigh instability of liquid jets. All other modes with angular variation,
m>1, are linearly stable, strongly suggesting that long-time evolution is
dominated by the axisymmetric behavior.

Stability of the Sphere. Similarly, for the sphere r(z) = -Jr2 - z2,
K1 =K2= 1/r, and the eigenvalue problem reduces to

with the surface Laplacian on the sphere given by

to yield the eigenmodes in terms of the eigenfunctions of the surface
Laplacian, Legendre functions of degree n and order m [Hil76],
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corresponding to the results of Nichols and Mullins [NM65b]. Apart from
the modes corresponding to changes of volume and translations, all of the
eigenmodes are damped, indicating the linear stability of the sphere.

Below we examine the remaining axisymmetric periodic surfaces, the
Delaunay unduloids [Del41] and discuss their role in the dynamics of sur-
face diffusion.

Stability of Unduloids. We know from the work of Vogel,
[Vog87, Vog89], that the unduloids are unstable. Except for the limiting
cases of the cylinder and sphere, unduloids ru(z) can not be expressed in
terms of elementary functions. Indeed, while the sum K1 +K2 is a constant
for the unduloids. K1(Z), K2(Z) both vary in space, further complicating the
form of equation (3.8). Consequently we numerically compute the eigen-
values and eigenfunctions of the unduloids via inverse iteration [PTVF92,
GvL89]. Given an unduloid with maximum radius r (see Fig. 2), there is
a single unstable axisymmetric eigenmode with a positive real eigenvalue.
The limiting cases of the cylinder, HQ-> \/r, and the sphere, J^->2/r, are
respectively regular and singular limits for the set of unduloids. In the
cylinder limit, the unstable eigenvalue approaches zero from above. In the
next subsection we show that the unduloids bifurcate subcritically from the
cylinder at period L = 2nr, the point where the cylinders change stability.
This yields an asymptotic estimate for the unstable eigenvalue in Fig. 3a
(shown as a dashed line) in the limit as Ho -> 1/r. In contrast, in the spheri-
cal limit, as 2/r — H0 = e -» 0 the the thickness of the unduloid neck and its
width are O(e). Since the eigenfunction is localized to the unduloid neck in
this limit, we expect that the unstable eigenvalue A~<T(e~4), for a fourth
order linear operator. Via a dashed line, we show that this asymptotic
behavior is consistent with the computed values of f. Note that in the

Fig. 3. The unstable eigenmodes for the family of unduloids with curvature 1 Ir < Hn < 2,/r,
and with minimal radius at r = 0. The numerically calculated eigenvalues are shown with the
asymptotics for the sphere and cylinder limits (left). The unstable eigenfunction (right)
localizes to the neighborhood of the unduloid neck in the sphere limit and approaches a
cosine in the cylinder limit.



cylinder limit, the unstable eigenfunction of the unduloid approaches the
cosine mode for the cylinder. (See Fig. 3b.)

3.2. Global Dynamics of Axisymmetric Surface Diffusion

In the previous subsection we reviewed the periodic equilibria and
their linear stability with respect to periodic perturbations. We now con-
sider the nonlinear dynamics near the periodic equilibria. Coleman et al.
[CFM95], using higher order perturbation theory, show that despite the
fact that cylinders are linearly short-wave stable, the superposition of two
perturbations with short periods can lead to nonlinear destabilization of
the cylinder and eventual pinchoff. We review one of their specific examples
in Section 4.2. Since different periodic equilibria exist with the same volume
and period, it is natural to consider the question of their nonlinear stability
with respect to perturbations of the same period. Below we use a combina-
tion of center-manifold perturbation theory and numerical computations to
illustrate that finite amplitude periodic perturbations with period less than
2n can also destabilize the cylinder, leading to finite time pinchoff.

Recall from Section 2.1, the surface diffusion equation conserves the
volume of solutions, (2.7),

Without loss of generality, we consider the family of L-periodic solutions
of fixed volume N = nL, equal to that of the cylinder with r=1. This nor-
malization allows us to compare the relative surface area of the constant
mean curvature surfaces enclosing equal volumes. A sphere with volume nL
has radius f=(3L/4)1 /3 and surface area A = n{6L)2/3 (see Fig. 4). The
isolated sphere (shown equivalently as two hemispheres in Fig. lb) must fit
within the interval, 2r<L, hence this surface exists only for periods L>
y/6. For this normalization, the unduloids exist for periods ^/6 <L<2n.

Figure 4 shows the surface area of equi-volume constant mean cur-
vature surfaces. The unduloids, where they exist, have the largest surface
area of all the constant mean curvature surfaces. For 0 < L < y/f>, the cylin-
der is the only equilibrium and thus is the global minimizer For
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Fig. 4. Surface area over period vs. period for equilibrium states. Those equilibria that are
unstable to perturbations of the same period (L) are shown as a dotted line. This includes the
branch of unduloids connecting the cylinder to the sphere and the cylinder for L > 2n.

v /6<L<9/2 , all three steady states exist with the cylinder as the global
minimizer of surface area. For 9/2 < L, the sphere becomes the global mini-
mizer of surface area. As we showed above, the unduloids are linearly
unstable and from (3.15) evolve towards a state with lower surface area. An
obvious question is the following: do perturbed unduloids evolve toward
the global minimizer of surface area, or can the evolution via surface diffu-
sion tend toward a local minimizer? We address this question next using
bifurcation theory.

We begin with a center-manifold expansion [Man90] near the critical
period 2n at which the linear stability of the cylinder changes. The con-
servation of volume for surface evolution introduces an additional con-
straint on the expansion. This problem bears a strong qualitative similarity
to the bifurcation of periodic patterns that arise in solidification (see for
example [ SB95 ]). In those problems there is a translation invariance of the
front location that corresponds to a conservation law similar to the current
volume constraint.

Recall from Section 3.1 that a cylinder of radius F= 1 becomes linear
unstable, on a periodic interval of length L, as L increases through 2K.
Expanding the function r(z) as a Fourier series in the neighborhood of the
cylinder r = 1 yields

Recall from (3.10) that the n = Q mode is neutrally stable, associated with
the conservation of volume. As L increases through 2n the modes with
n = ± 1 is become unstable, and the remaining modes are stable. Conse-
quently, there is a two-dimensional center-manifold tangent to A±1 at the



origin (that is where An = Q) and an algebraic constraint associated with
volume conservation. Substituting the expansion (3.16) into (3.4) and per-
forming a Galerkin expansion reduces the PDE to an infinite set of coupled
ODEs.

Volume conservation, Parseval's theorem, and the expansion (3.16)
gives

an algebraic constraint determining the neutral constant mode Ao in terms
of the remaining Fourier coefficients.

Proceeding with the center-manifold expansion, we expand the
amplitudes of the stable modes (Ak with \k\ > 1) in terms of the center
modes (A±l),

where the phase of A1 is arbitrary, reflecting the translational invariance.
This becomes apparent if we write the solution for r(z),
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From the volume constraint (3.17), we can solve for Ao

Finally, projecting (3.4) onto the center-manifold and substituting for Ao

and A2 from (3.19) and (3.18) respectively yields a cubic Landau equation
for the amplitude A1

valid in a small neighborhood of L = 2n and |Ak| « 1.
This equation describes a sub-critical pitchfork bifurcation from the

cylinder to a branch of unstable periodic equilibria for L<2n that we iden-
tify as the unduloids. The solution on the bifurcating branch has



744 Bernoff, Bertozzi, and Witelski

Fig. 5. Bifurcation diagram for the dynamics near the equilibrium surfaces. The solution
branches are represented by the minimum value of the radius achieved on the interval
0 < z ^ L , rmin. The results of the center-manifold expansion expansion (3.22) fu are also
plotted for L -> 2n.

where z0 is an arbitrary constant related to the phase of A1. Figure 5 shows
that (3.22) matches the unduloid solutions very well as L->2n.

We expect from this bifurcation structure that the stable manifold of the
unduloid is a separatrix in phase space that divides the basin of attraction
of the cylinder from those solutions that eventually pinchoff, attempting to
approach the lower energy spherical solution. The dynamics is shown
schematically by the arrows in Fig. 5. In particular, this suggests that for
any perturbed unduloid r, the sign of the quantity

the H–1 projection of the perturbation onto the unstable eigenmode, deter-
mines the ensuing dynamics.

We performed a numerical study via periodic simulations of the PDE
(3.4) to test this conjecture. For ease of computation, we choose a volume
preserving perturbation of the unduloid either "toward" or "away" from
the cylinder

where e = 0 is the unperturbed unduloid and e = 1 is the unit cylinder.
Positive values of £ perturb "toward" the cylinder while negative values
perturb "away" from the cylinder. Our numerical computations of Eq. (3.4)
with initial data given by (3.24) indeed verify our description of the
separatrix nature of the unduloids. Figure 6a shows a typical solution with
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Fig. 6. Evolution of the perturbed unduloid starting with initial data (3.24). In the first case,
e = 0.05 and the perturbation is "towards" the cylinder; we observe relaxation to it in infinite
time. In the second case, e= —0.05 the perturbation is "away" from the cylinder and we
observe finite time pinchoff. This particular example is for the unduloid with period
L » 5.2 < In however the same qualitative results were seen for all perturbed unduloids.

£ > 0 0 relaxing back to the cylinder while conversely a very similar solu-
tion with e<0 (see Fig. 6b) is driven toward pinchoff. Note that these
results indicate that finite amplitude periodic perturbations of the cylinder
with period less than 2n can destabilize the cylinder to evolve into a finite
time pinchoff.

This local description of solution space applies to solutions with low
surface areas. In general, there are multiple co-existing separatrices dividing
regions in phase space. For example, period n unduloid solutions exist for
any interval with Inn>L>n ^/6. However, these higher mode solutions
have surface area that scale like O(n[/3) and are energetically unfavorable
compared with the fundamental solutions described earlier.

Physically, perhaps the most relevant problem is the evolution of a
perturbed long (effectively infinite) cylinder. The work of Coleman, Falk,
and Moakhar [CFM95, CFM96] shows how the nonlinear interaction of
short-wave perturbations can seed the growth of the long-wave instability.
Consequently we believe that small-scale imperfections (surface roughness)
will eventually drive the surface to pinchoff, even if the scale of the rough-
ness is well below the cylinder radius.

In the following sections we focus on the solutions that are driven to
pinchoff. In particular we use numerical computations and asymptotic
analysis to describe the self-similar behavior leading up to the time-finite
pinchoff singularity.

4. SELF-SIMILAR SOLUTIONS FOR AXISYMMETRIC
PINCHOFF

In Section 2 we introduced the equations of motion (3.4) for an
axisymmetric surface under the dynamics of surface diffusion,



where x = (tc — t) and the exponents a and B] suggest that the characteristi
scales in the problem go to zero as some power law in t -> tc, where tc is
the time of the pinchoff. Following ideas used in previous studies of self-
similar pinchoff, we examine the possibility of such behavior in the surface
diffusion problem. In this section we show that there exists a discrete count-
able family of similarity solutions describing pinchoff, each with a different
cone angle. Furthermore, we show that the similarity solution with the
largest cone angle is in excellent agreement with the asymptotic behavior
of the pinchoff resulting from destabilizing one of the unstable steady solu-
tions described above. In the next section we analyze the stability of these
profiles, showing that there is a unique stable one, possessing the largest
cone angle, and observed in computations. The fact that we find multiple
similarity solutions is not surprising. An analogous phenomena is known
for the droplet pinchoff problem [BLS96] where, for the problem with
inertia, there are a countably infinite number of similarity solutions, all
with the same axial and radial scaling.

Suppose that the axisymmetric solution has a finite time pinchoff
singularity at the position z = zc and at the time t = tc. Actual computation
of the pinchoff location and time is a delicate matter that we discuss in
more detail at the end of this section. To describe the local behavior near
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In Section 3 we showed some numerical computations illustrating that
certain perturbations of the unduloid (in particular those "away" from the
cylinder) can lead to finite time pinchoff. Previous numerical computations
of the unstable cylinder [CFM96, CFM95] also indicate a finite time
pinchoff. The numerical simulations in [CFM95, CFM96] show that the
initial pinchoff results in a change in topology of the surface, with the even-
tual relaxation to uniform spheres.

When no small length-scales exist in a problem, one might expect the
local dynamics of the pinchoff to be self-similar [Bar96]. The problem of
self-similarity of pinchoff in free boundary problems has been the subject of
much study during the past decade. Examples include both longwave stable
problems, such as pinchoff of a thin-neck in the unforced Hele-Shaw cell
[ABB96] and rupture of a liquid thin film [BBDK94], and long-wave
unstable problems, such as inviscid capillary breakup of a film bridge
[CS97], the gravity driven Hele-Shaw cell [GPS93], and droplet pinchoff
[Egg93],

In all of these problems the local structure of the pinchoff takes the
form
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the pinchoff point and close to the pinchoff time, consider a change of
variables in (4.1) to the similarity variables

The time change of variables s= –ln(t) maps finite time behavior in t to
infinite time behavior in s. This change allows us, in the next section, to
study the linear stability of the self-similar pinchoff profile. We express the
similarity solution as

Making the change of variables (4.2) yields the following equation for R in
terms of n and v.

where

An exact similarity solution of (4.1) corresponds to an s-independent solu-
tion of (4.3). The balance of the time dependences on the right hand side
of (4.3) and in (4.4) demands that a = B. Then balancing the time
dependences on the left and right hand sides of (4.3) gives (1/4) = a = B.
This is an example of "first type" similarity scaling, where the time depen-
dences can be computed using dimensional analysis [Bar96]. A similarity
solution R(n, s) = R(n) satisfies the similarity ODE

The next subsection analyzes the similarity ODE and its solutions.

4.1. The Similarity ODE: Asymptotics and Computations of
Solutions

Pinchoff is a localized phenomenon involving decreasing length-scales
and vanishing transport of mass. Consequently, away from the pinch-point
zc, the similarity solution, in original z, t variables, is to leading order time
independent as t-tc. This demands that R, the solution of (4.5), satisfies



with a, = – 1, a2, 3 = (1+ / v / 3 ) /2 . Modes m = 2, 3 exhibit exponential
growth for large |n| and must be suppressed to obtain behavior (4.6). This
fixes two boundary conditions at each of the limits r\ -> + oc, which
suggests, since (4.5) is fourth-order, that the solutions are discrete and
locally unique.

4.1.1. Numerical Computations of the Similarity Profiles.
We conducted a numerical search for solutions to (4.5) using a finite dif-
ference approximation of (4.5) on a suitably large finite domain and a
Newton-Raphson relaxation method for finding solutions. The computa-
tions were done on a finite but suitably large domain. The far field conditions
(4.6) were satisfied by imposing r]R,l~R = Q (an eikonal approximation of
Eq. (4.5)) at the end points and at the second to last end points, thus giving
"four" boundary conditions for a fourth-order equation. In terms of the
WKB expansion (4.8), the asymptotic boundary conditions suppress the
exponentially growing modes and yield locally unique solutions of (4.5).

As the starting point for the iterative method we use an exact solution
of the long-wave approximation, described below, with prescribed far-field
slopes c±; regardless of the choice of far-field slopes or symmetry of the
guess, the Newton-Raphson iteration always rapidly converged to a sym-
metric similarity solution with a nearby slope. Using this method, we found
the symmetric solutions, Rt{ri), / = 0, 1, 2,..., a countably infinite set ordered
by the far field slope co>c1 >c2> •••• Figure 7 shows a plot of the first
ten similarity solutions. Table I lists the center value /t,-(0), the far field
slopes, c,- = R'i(oo), and the half cone angles, $,• = tan~{(c,), for the first si
similarity solutions.

Is there a unique solution, many solutions or no solutions to (4.5) satis-
fying conditions (4.6) and (4.7)? we address this question via asymptotic
methods and numerical computations in the following subsections.

A far-field linearization of (4.5) gives us a first indication of the
behavior of solutions to the similarity ODE (4.5). Consider a perturbation
of a solution that satisfies condition (4.6) in the far-field: R(n)-** c±i] +
w±{rj) as rj-* ±cc. Applying WKB theory [BO78] yields an algebraic
solution wo(n)~77, corresponding to a change of far-field slope, and three
exponential modes,

Furthermore, since the similarly solution describes the local structure of a
tube before pinchoff,
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Fig. 7. First ten similarity solutions, RAi)< i = 0. 1, 2,..., 9.

We note that even though the iterative scheme used strongly non-sym-
metric initial guesses, it always converged to a symmetric solution R(n).
We conjecture that the only solutions of (4.5) satisfying (4.6)-(4.7) are the
countable set of symmetric solutions described here.

Since the numerically computed far field slopes c, go to zero as i-> oo,
we compare the computed solutions with corresponding exact solutions of
a long-wave approximation described below.

4.1.2. The Long-Wave Approximation of the Similarity ODE.
We can simplify Eq. (4.5) via a small cone-angle approximation. Consider
the rescaling

i

0
1
2
3
4
5

Ri0)

0.701595
0.636461
0.456842
0.404477
0.355884
0.326889

1.03714
0.29866
0.18384
0.13489
0.10730
0.08942

46.0444°
16.6288°
10.4170°
7.68279°
6.12470°
5.11027°

for 0 < e « 1. This scaling yields Rn = O(e2), , / l + R2
n ~~ 1 + O(e4), and the

equation for the steady similarity solution reduces to

Table I



This representation shows that Eq. (4.10) has a continuous one-parameter
family of solutions, parametrized by the ratio u = c + /e_, with the
appropriate limiting behavior as n-* co (see Fig. 8). Of these solutions
there is a unique symmetric solution (see Fig. 8). In addition to offering
some insight on the asymptotic form of (4.3), this long wave approxima-
tion was used to generate initial guesses for the Newton-Raphson iteration
method for the full similarity ODE (4.5).

Equation (4.10) is a uniform approximation of (4.5) to O(e4). If we
choose e to be equal to the square root of the far-field slope, e = N/cT, then
the full solution to the similarity ODE and its long-wave approximant have
identical leading order far-field behavior. Consequently, we can express
each similarity solution in terms of the long wave theory and a deviation,

Fig. 8. U–V phase plane for the long wave Eq. (4.10). Shown are various solutions all with
the appropriate far field asymptotic behavior to describe conical pinchofi'. The symmetric solu-
tion is drawn with a heavy dotted line.
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Equation (4.10) is scale invariant under the transformation (4.9) for
any c > 0 ; as a result, it reduces to a phase plane system in terms of the
variables

to yield the autonomous system

where R0(n) is the unique symmetric solution of (4.10) with R'0(n -> oo) -> 1.
As shown in Fig. 9, the deviation is O(e4) with a finite amplitude smooth
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Fig. 9. Leading order long-wave deviation W,(tf) for the first six similarity solutions and the
limiting behavior.

limiting profile Wj(fj) as i-* oo. Note that since the far field of the long-
wave solution satisfies (4.6), Wt must have the asymptotic behavior as the
WKB results given earlier. Figure 9 shows that the first order deviations
Wj{fj) are localized to a neighborhood of the origin and validate the long
wave approximation (see Fig. 9). As the index i increase W^fj) develops
more oscillations, and W,{fj) has 2(i+ 1) nodes. These oscillations are du
to higher-order near-field effects and decrease in amplitude as c, -* 0. Note
that substituting (4.13) into Eq. (4.5) for finite values of c, yields a non-
linear problem of the form

that would yield the values c, as discrete eigenvalues and the deviations
Wj(rj) as bounded oscillatory modes with far field exponential decay.

4.2. Evidence of Self-Similarity in Numerical Computations of
Pinchoff

The numerical and asymptotic results of the previous subsection
suggest the existence of a countably infinite, discrete set of symmetric
similarity solution describing pinchoff of an axisymmetric tube under the
motion of surface diffusion. In this section we perform numerical computa-
tions of Eq. (4.1) using self-similar adaptive mesh refinement to capture the
structure of the pinchoff. Our goal here is to determine numerically which
of the symmetric similarity solutions are actually observed in the pinchoff
process. The details of the numerical scheme are presented in the appendix.

First we show a calculation using the initial data from the first numerical
computation presented in [CFM95] (see Eq. (57) in that paper). This
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choice of initial data is symmetric about the eventual pinch-point and we
exploit the symmetry in our computation. In a second calculation we
choose initial data for which the interface closely approximates an array of
spheres joined together by thin filaments (string of pearls). In this case the
solution is not symmetric about the pinch point. In both cases, regardless
of the symmetry of the initial condition, the local structure of the pinchoff
showed excellent agreement with that of the symmetric similarity solution Ro,
shown in Fig. 7.

This initial condition has a minimum period of An and is symmetric about
z = 0. We exploit this symmetry to compute on the half interval from 0
to 2n.

We initially chose this data as a first test of our code, since we use a
different scheme from that used in [CFM95]. At early and intermediate
times our results showed excellent agreement with those in [CFM95].

Then we compare our simulation at times close to the singularity time
with the similarity solution. Using a self-similar adaptive mesh refinement
scheme we resolved the singularity to very small length-scales. The solution
develops a finite time pinchoff at the origin, with a local cone angle equal
to that of the similarity solution .Ro. Profiles of the solution are shown in
Fig. 10 at times close to the pinchoff time, which we measure to be at
roughly t = 30. Precise determination of the pinchoff time for an initial
value problem is difficult due to the accumulation of discretization and
round-off error that occurs in any discrete time-stepping scheme. However
we can more precisely compute the time to pinch, and those values are
given in the caption of Fig. 10.

Fig. 10. The evolution of the interface from initial data (4.15). The solution pinches in a
symmetric fashion with a fixed cone angle equal to that of the similarity solution R0. Shown
are profiles of r(z, t) with respective numerical values of the time to pinchoff, T = t c . - t , equal
to 10, 5, 8.7 x 10–2 , 1.7 x 10~2, 1.1 x 10"3, 6.5 x 10~5, 2.0 x 10~6, and 2.6 x 10~7.

Case 1: CFM Initial Data. The initial data is
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Fig. 11. (a) Validation of the time dependence of rc. A graph of rc vs. \drc/dl\ comparing the
numerical data ( • ) with the similarity solution (black line), \drjdt\ = «0(0)4/(4r'). There are
no free parameters in the fit. (b) Rescaled height profiles over eight orders of magnitude in
the pinchoff radius. Profiles obtained from the PDE simulation are plotted with various sym-
bols corresponding to the value of rc\ for re = 2Ax 10"2, • for rc = 7.5 x 10"4, O for
rc = 2.3x 10-5, A for rc = 7.0 × 10–7 , <1 for rc = 2.1 x 10–3, and * for rc = 6A x 10–10. All of
the data collapse directly onto the similarity profile Ro, shown with a solid bold black line.

From the similarity variables (4.2) with a = B = (l/4), we anticipate
that the characteristic width of the pinch region scales like the radius at the
pinchoff position rc(t) = r(zc, t). We verify that the time dependence of rc is
consistent with the similarity solution. Since the actual critical time is
difficult to compute due to accumulated errors, we compare with
"dynamic" measure of rc by plotting it against the numerical value of its
time derivative. Figure 11a shows rc vs. \drcjdt\. The boxes ( • ) show the
numerical data while the soled line is a graph of_the curve |drc/dt| =
0.060575684/r3

c, satisfied by the similarity solution Ro, where R0(Q)4/4 =
0.060575684. Notice that the agreement is excellent. This confirms the time
dependence of the minimum height with no free parameters in the fit. We
now compare the local structure of the pinch to the similarity solutions
found in the previous subsection. Since we can easily compute rc numeri-
cally, we rescale the r{z, t) plots near the pinch point by dividing the space
variable z and the height by rc. Figure l i b shows this data compared to
the similarity solution Ro rescaled in the same fashion. There is excellent
agreement with the similarity profile and complete collapse of the data in
the similarity coordinates.

Case 2: String of Pearls. The initial data is
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Fig. 12. Evolution of the interface starting with "string of pearls" initial data (4.16) shown
above as the dashed line. The solution pinches in two points on either side of the sphere.
Locally near the pinchoff we blow up the box in the second figure to show that the structure
of the pinchoff is again symmetric.

on [ –10, 10] with periodic boundary conditions at the endpoints. For the
computation presented here, we chose S = ½ and y = 0.1.

Figure 12 shows the solution as it starts to pinch. The "spherical"
region stays roughly spherical while the solution pinches near the end of
the sphere. This is expected since the initial data has constant curvature in
the spherical region The solution is not symmetric about the point of pinch
yet the local structure of the pinch is again consistent with the symmetric
similarity solution Ro.

5. STABILITY OF SIMILARITY PINCHOFF PROFILES

In the previous section we examined the possible forms for self-similar
pinchoff behavior in axisymmetric motion by surface diffusion. In this sec-
tion we develop a stability theory that explains why a particular solution
is dynamically selected.



For a self-similar pinchoff at a point zc we look for a solution to (5.1)
in which r(zc, t) -»• 0 at a finite time tc. Via a careful numerical study, we
found a countably infinite set of symmetric similarity solutions Rt(n),
i = 0, 1, 2, each describing a possible path to axisymmetric pinchoff. Each
of these similarity solutions describes pinchoff in which the interface locally
approaches a cone on each side of the pinch point zc. All of the similarity
solutions are symmetric about the pinch-point zc, yielding the same far-
field cone angle on either side of zc.

Despite the fact the we found many similarity solutions, the only one
ever observed to describe the local structure of the pinchoff, in numerical
computations of the PDE, is similarity solution Ro. In Section 4.2, we
presented an example of a refined numerical computation of such a
pinchoff and compared the local structure with the similarity solution Ro.
We found beautiful agreement over many decades of scaling in the mini-
mum as pinchoff is approached.

In this section we show that the reason the smaller cone angle
similarity solutions R1, R2,~ are never observed in pinchoff is that they are
all linearly unstable to small perturbations. Hence, generically they will not
occur in a pinchoff calculation. Section 5.1 presents the detailed linear
stability analysis, in similarity variables, of the similarity profiles R,. Part
of the difficulty of studying linear stability of a similarity solution is that
the transformation to similarity variables requires understanding how sym-
metries, of the original unrescaled PDE, transform. We show that for the
axisymmetric problem, time translation and space translation, expressed
in similarity variables, lead to two anomalous positive eigenvalues in the
spectrum of the linearized operator. If the remainder of the eigenvalues are
negative, then modulo translations in time and space (invariances of the
original PDE), the similarity solution is linearly stable. In Section 5.1.2 we
numerically compute all the positive eigenvalues of the linearization about
the similarity solution Ri and show that except for the solution Ro, all of
Ri have positive eigenvalues associated with instability.

In Section 5.2 we present a numerical computation illustrating the
instability of the similarity solutions Rl. We show that the destabilization
of the solution is in excellent agreement with the linear stability analysis
described below. Finally in 5.3 we examine the stability of the axisymmetric
similarity solutions with respect to non-axisymmetric perturbations. We
show there that the similarity solution Ro is also stable to non-axisymmetric
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Recall that in axisymmetric coordinates, the equation of motion is



Note that if R is linear in the far-field that it satisfies (5.6) and thus the
perturbation, P, also satisfies this linear boundary condition. Since (5.6)
depends on the rescaled time, s, the associated linear stability eigenproblem

the linearization about the steady state R.
In addition, we need to apply boundary conditions to P in the far-

field. Consider a matching regime near the pinchoff region in primitive
variables, |z — z c | ^ l , but in the far-field of the pinchoff in similarity
variables, |n| = |z — z c | / t 1 / 4 » 1. We assume that although rapid changes
are taking place on small scales close to pinchoff point, that the evolution
in the far-field still occurs on a time-scale of order unity, rt ~ 0( 1). In
similarity variables this yields the boundary conditions

where the functional N(R) is the right-hand side of Eq. (5.3).
Substituting R(n,s) = R(r])+cP{fi,s) and linearizing (5.4) in P yields

The time change of variables .v= –ln(tc – t) maps finite time behavior in t
to infinite time behavior in s.

The similarity solutions Rt computed in Section 4.1.1 are "steady"
(s-independent) solutions of (5.3). To compute their stability we linearize
(5.3) about each of the Rt. We note that (5.3) can be written in the form

yields the similarity form of the PDE (5.1):

perturbations, making it an excellent candidate for generically describing
pinchoff of a non-axisymmetric tube.

5.1. Linear Stability Analysis

In order to understand the linear stability of the similarity solution, we
work in similarity variables. Making a change of variables in Eq. (5.1) to
similarity variables
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has the eigenvalue appearing in the boundary condition. The boundary
conditions provides two constraints at each boundary by eliminating the
exponentially growing modes found by WKB theory in the previous section.

5.1.1. Symmetry Modes of Linearized Operator. The linear
stability problem derived above (5.5), (5.6) has a discrete spectrum. How-
ever, certain modes in the spectrum are associated with the symmetries of
the problem. It is well known that linearizing the actions of certain sym-
metries in physical space can lead to null modes for the linear operator
[CH93, WB98]. In our problem, because we are working in similarity
variables, linearizing the symmetries can lead to anomalous positive eigen-
values. Both time and space translation in the original PDE yield positive
eigenvalues in the spectrum of the linear problem (5.5), (5.6). This is
because a fixed size e translation in the space variable z-* z + e leads to
a dilating translation of the similarity variable n->n + ees/4. Likewise a
translation in the time variable, t, transforms to an exponential dilation of
the similarity solution. We first show that linearizing the symmetry opera-
tion yields a solution to the linearized problem, and then explicitly derive
the eigenvalues and eigenfunctions of L in (5.5) associated with time and
space translation.

Suppose e parametrizes a continuous symmetry, which transforms a
steady solution R(n) to a family of solutions R(n,s;e) with £ = 0 corre-
sponding to the identity, i.e., R(n) = R(rj, s; 0). Expanding around £ = 0
yields

Let us now examine the spatial and temporal translation symmetries
explicitly.

Consider the spatial translation symmetry, z -> z + e. In terms of
similarity variables, this transforms n->n + ees/4, and to linear order in e

Substituting (5.7) into the similarity PDE (5.4) and expanding to order e
shows that Re satisfies the linearized similarity equation, (5.5),
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where Re represents the direction of an infinitesimal application of the sym-
metry (i.e., an infinitesimal generator of the symmetry),
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The order e contribution must satisfy the linearized similarity equation,

producing the spatial-translational eigenfunction RitZAi) = K(i) with
eigenvalue Xz = 1/4.

Similarly, the time shift symmetry, t-*t + e takes r - » r ( l - £ e J ) and
expanding to order e yields

producing the the time-shift eigenfunction Rt T(rj) = {(riR'^r]) — Ri(ri)) and
eigenvalue kT=1.

The eigenfunctions corresponding to Xz and XT and other possible
symmetries of the equation are anomalous in the sense that they are not
associated with structural instabilities; they correspond to infinitesimal
translations in zc and tc. They are associated with positive eigenvalues
because two pinchoff solutions shifted slightly in space and/or time in
physical variables appear to be diverging exponentially in 5. If we consider
the evolution of a perturbed similarity solution, projections on these modes
can be eliminated through small shifts in zc and tc, corresponding to a shift
of the pinchoff s location in space and time.

If we consider non-axisymmetric perturbations, then four more geo-
metric symmetries are relevant, corresponding to translations and rotations
of the solution. We discuss these in Section 5.3.

5.1.2. The Spectrum and Eigenfunctions of the Linearized
Operator. The time and space translational symmetry of the PDE gives
us two points in the spectrum of £: XT = 1 resulting from time translation
and Xz = 1/4 resulting from space translation. To determine the rest of the
spectrum of if and corresponding eigenfunctions, we use numerical methods.

Since if is the linearization of a nonlinear diffusion operator, we expect
the spectrum to have only a finite number of positive eigenvalues and an
infinite set of negative modes (a result supported by our numerical calcula-
tions). We are interested in which similarity solutions are stable, so we
present numerical computations only for the positive eigenvalues associated
with the linearized operator if.

We compute each Ri numerically using the finite difference Newton-
Raphson method outlined in Section 4. The Newton-Raphson scheme
yields a discretization of the linear operator L(Ri) in the form of a banded
Jacobian matrix. Calculating the eigenmodes of this matrix provides
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estimates of the eigenvalues and discretizations of the eigenmodes of the
linear operator. We compute the dominant eigenvalues and eigenvectors
using a generalized, complex inverse iteration scheme [PTVF92, GvL89].
Each similarity solution Ri has a corresponding linear stability operator
L(Ri) with 2i + 2 positive modes, including the two that result from time
and space translation. All of the positive eigenvalues are purely real (see
Fig. 13). We tested the accuracy of this procedure by measuring how well
the method recovered the known eigenfunctions and eigenvalues from the
symmetry groups.

From Fig. 13 we see that the fundamental solution R0(n) is the only
similarity solution with no positive eigenvalues apart from the symmetry
modes. Each of the successive similarity solutions Rj(n), i= 1,2, 3,..., has
two more unstable modes than the previous one. These modes are created
in symmetric/anti-symmetric pairs with a separation in the eigenvalues that
decreases as i increases.

The far-field asymptotics of the eigenfunctions of the linear operator
L can be derived from examining the far-field time-independent nature of
the similarity solutions. As |n| -> oo, the algebraic solution satisfying the
boundary condition (5.6) behaves as

This algebraic decay in the far-field is consistent with the symmetry modes,
X = ½, 1. Additionally, from (5.11) we see that any perturbation, with super-
linear growth for large |n|, decays in time.

The linear stability only describes the dynamics near n = 0; we expect
that the eigenfunction expansion only converges in an L2 norm with a
exponentially decaying weight function (see [GK87, FK92, Way97]).

Fig. 13. Positive eigenvalues for the discrete similarity solutions, Ri(n), i = 0, 1,2,.... Note
that A. = 1/4 and XT= 1 are anomalous positive eigenvalues associated with space and time
translation.



In the next section, we examine the changes of the far-field slope and
other global structural changes that arise from the instability of the
unstable similarity solutions; the nonlinear nature of these dynamics forces
us to examine the problem numerically.

5.2. Comparison with Simulations of the Fully Nonlinear
System

We perform computations of the full PDE (5.1) that confirm the linear
stability theory predicted above. The computations from Figs. 10 and 11 in
Section 4 illustrate that the stable similarity solution .Ro is recovered over
many decades of scaling in the pinching of the solution.

Now we take one of the unstable similarity solutions found in Section 4
and show via direct numerical simulation that this solution is unstable. We
consider the first unstable similarity solution R1(n), with half-cone angle
p1 = 16.63°. Linear stability analysis for R1(n) yields two unstable modes,
apart from the symmetries, with eigenvalues X1, 1 = 1.2048 and Ai, 0 = 1.7328
(see Fig. 13). The largest eigenvalue A0= 1.7328 has a corresponding eigen-
function A1, 0(n) that is antisymmetric while the second eigenvalue Xl=
1.2048 has the symmetric eigenfunction R1,1(n).

We consider an initially small antisymmetric perturbation of the sym-
metric similarity solution R1(n) and watch how this perturbation grows in
a simulation of the fully nonlinear PDE. We show that the initial growth
of the perturbation is dominated by the Alt 0{rj) eigenmode. Our computation
was done on a large finite domain, [ – L , L ] with L = 20, with Neumann
boundary conditions consistent with the initial data,
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and initial data

The evolution is depicted in Fig. 14.
In the absence of the perturbation term in (5.13), this initial data

would yield R1 self-similar pinchoff at position zc = 0 and time tc=1. To
numerically separate the antisymmetric perturbation from the evolving
solution we compute the antisymmetric part of the solution



Fig. 14. Destabilization of the unstable similarity solution .R, by an antisymmetric perturba-
tion given in (5.13). The eventual pinchoff has local structure of the stable similarity solution Ro.

In Figs. 15a, b we show that this perturbation does evolve according to the
dominant eigenmode, in terms of z, t,

In Fig. 15a we compare the amplitude of the perturbation rodd(z, t)
with the evolution predicted by (5.15), namely the power law (tc — t)l/4~x'°.
Note that Fig. 15a is on a log-log scale where the power law is represented
by a straight line with slope 1/4-A1, 0« – 1.48. The comparison with the
fully nonlinear simulation (the A's) shows extremely good agreement at

Fig. 15. (a) The amplitude of the perturbation as defined in (5.14) compared with the evolu-
tion predicted by linear stability theory, ( t c – t ) 1 / 4 - s 0 . The comparison with the fully nonlinear
simulation shows extremely good agreement at early times with departure at later times as the
nonlinearities in the dynamics become more important. The perturbation profile rodd(z, t)
rescaled in similarity variables evolving in time towards the most unstable eigenfunction

Axisymmetric Surface Diffusion 761



early times with departure from linear theory at later times as the non-
linearities in the dynamics become more important. Moreover, in Fig. 15b
we show the excellent agreement of the spatial profile of the perturbation
rodd(z, t) with the eigenfunction Ri,0{r]) for times from x = tc – t = 0.9 to
0.04. During this time, the perturbation has grown by approximately two
orders of magnitude. However, as r -> 0 and pinchoff is approached more
complicated nonlinear effects come into play, interacting with the linearized
evolution (see Fig. 14). Observe that the perturbation causes one of the
local minima of Ri(n) to become a new pinchoff position znew, with
possibly a new critical time tnew. This evolution necessarily involves the
translation symmetry modes Xz and XT. As mentioned earlier (5.11), non-
linear effects are necessary to modify the local structure around the
pinchoff position to yield the appropriate far field of the stable similarity
solution r ~ (tnew-1)1'4 R0((z-znej/(tnev/- t)m). The fact that AZ, XT>0

reflects the sensitivity of the dilational form of the similarity variables (5.2)
on the values zc, tc.

5.3. Non-Axisymmetric Perturbations

In addition to linear stability of the similarity solutions with respect
to axisymmetric perturbations, it is important to consider the possible
influence of more general deformations. Unstable modes with angular
dependence would cause cylindrical solutions to destabilize, yielding more
complicated non-axisymmetric surfaces. Our calculations show that this is
not the case.

Consider a non-axisymmetric perturbation of the axisymmetric
similarity solution of the form
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where we have exploited the axisymmetry of the base state to decouple the
solution into angular modes. Note that the rotational invariance allows 60

to be chosen arbitrarily—choosing 0 and n/2, for example, yields cosines
and sines which span the set of angular functions. The stability analysis
proceeds by substituting into the full governing Eqs. (3.1)—(3.3) and
linearizing about the similarity solution to obtain the eigenvalue problem:

The resulting expressions are extremely cumbersome and the MAPLE sym-
bolic manipulation program was used to formulate the analytic problem
for the numerical computation of the eigenvalues.



As was described in Section 5.1, the eigenmodes connected to invariant
symmetries can be obtained analytically. In addition to the two axisym-
metric modes for m = 0, there are four symmetry modes for m = 1.

Two of these correspond to translations of the cylindrical axis in the
transverse plane and have k = 1/4. Consider spatial translation in x, x ->
x + e. In terms of similarity variables, this transforms to

The order e contribution must satisfy the linearized similarity equation; we
can identify the m = 1 eigenmode (with t0 = 0), producing the x – z rota-
tion eigenfunction A] xz(n) = n — RR' with eigenvalue Xxz = 0. A similar
calculation produces the x — y rotation eigenfunction with m = 1 and
90 = n/2, given by A) Y(n) = rj — RR' with eigenvalue X Y = 1/4-

Aside from these symmetry modes, any unstable angular eigenmodes
would destabilize the similarity solutions found above. We are most inter-
ested in the full stability of the unique axisymmetricstable solution R0{t]).
Our numerical computations show that all eigenvalues are real and
negative aside from the anomalous eigenvalues associated with the sym-
metries (see Fig. 16). Thus, the unique similarity solution stable to axisym-
metric perturbations is also stable to nonaxisymmetric perturbations.
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transforming into the similarity variables and linearizing in e yields

producing the x-translational eigenfunction A[ x(n) = 1 with eigenvalue
Ax= 1/4. A similar calculation produces the ^-translation eigenfunction; the
symmetry produces a change of variables given by replacing cos(0) with
sin(0) in Eq. (5.18). Consequently, we identify the analogous m= 1 eigen-
mode with 80 = n/2, given by A] r(tj) = 1 with eigenvalue XY= 1/4.

There are also two eigenmodes associated with rotation, describing
yawing and pitching of the axis. Because the rotational symmetries are
invariant under the resealing, the associated eigenvalues are zero. The x — z
rotation symmetry is given by

The order s contribution must satisfy the linearized similarity equation; we
can identify the m = 1 eigenmode (with 9o = 0) as a constant,
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Fig. 16. Eigenvalues for non-axisymmetric eigenmodes with angular dependence eim0 for the
stable axisymmetric similarity solution Ra{>]). The nonnegative eigenvalues are all associated
with translation and rotation symmetries of the solution.

Our numerical investigation of the other similarity solutions Rt(N),
j = l,2,... found no unstable modes for the non-axisymmetric (m>1)
perturbations. This suggests that simple axisymmetric evolution is the
dominant behavior in cylindrical geometries.

6. DYNAMICS AFTER PINCHOFF

In the previous sections we considered the dynamics leading up to
pinchoff. Exactly at pinchoff the local instantaneous structure of the solu-
tion is thought to be that of a double cone [ WMVD98], rc(z) = co|z- zc|
as z->zc. For times after pinchoff the solutions separates into two bodies.
No proof is available to describe the continuation of the solution through
this topological singularity, but it is possible to solve the surface diffusion
problem in the new geometry for any finite time after pinchoff.

To describe the two pinched-off volumes it becomes more convenient
to express the surfaces in the form z = z(r, t). The equation of motion for
the surfaces can then either be derived directly from (2.3) or from (3.4)
using an inversion of variables to yield the equation

As in the situation before pinchoff, we can obtain solution of (6.1) in terms
of the similarity variables



and a1 = l, a2, 3 = ( – 1 ±iy/3)/2. The suppression of the exponentially
growing mode m = 1 requires only two boundary conditions. Thus the
solution is under-specified and we expect a continuum of solutions to exist.
As per (6.4), numerical calculation of steady solutions of (6.3) yields a con-
tinuous family of solutions parametrized by the far-field slope b. Continuity
of the far-field structure of the similarity solution with the slope c0« 1.037
of R0(t]) from before pinchoff suggests the solution with b= 0.964
[WMVD98]. Similarity solutions for different values of b are shown in
Fig. 17, along with a schematic diagram of the geometry.

Fig. 17. The geometry after topological break-off and the continuous family of after-pinchoff
similarity solutions.
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satisfying the similarity partial differential equation,

for Z(p) defined on 0 < p < 00. For post-pinchoff behavior to be localized to
the neighborhood of zc, the similarity solution must take the form of a cone,
Z{p) ~ bp in the far-field, with b = 1/c, and from (6.3) we obtain the expansion,

Using a WKB expansion as was done in Section 4, the linearized behavior
of solutions in the far-field can be expressed as Z(p) ~ bp + w(p), where
wo(p) ~ p, or one of the three exponential modes,
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We begin the analysis of the stability of these solutions over a range
of possible values for b by considering the limit b -»0. The limit b -* 0 is a
flat surface, z(r,t) = zc, about which we can linearize (6.1) z(r, l)=zc +
Ef(r) eat to obtain

This equation is an axisymmetric biharmonic equation, of + V4f = 0, and
can be solved in terms of Hankel transforms to yield

with the dispersion relation a = — k4. For analytic initial data that is
exponentially localized to a neighborhood of the origin r = 0, the Hankel
transform can be written as a Taylor series,

By substituting (6.8) into (6.7), letting co = kzl/4 and using (6.2), we obtain
the solution in terms of similarity variables as

where

Equation (6.93) is an eigenfunction expansion with a countably infinite set
of real, stable eigenmodes (6.10). Numerical calculation of the linear
stability for similarity solutions at finite h shows that the spectrum remains
discrete and stable but does not continue to be purely real, and hence we
can conclude that the linear operator is not self-adjoint in general. As b
increases, more and more pairs of real eigenvalues coalesce to form com-
plex conjugate pairs (see Fig. 18).

In addition to the axisymmetric eigenmodes enumerated by (6.10)
there are also two symmetry modes. Equation (6.1) is invariant under
translations in space and time. Applying these invariant transformations to



Axisymmetric Surface Diffusion 767

Fig. 18. Linear stability of the post-pinchoff similarity solutions: a plot of the eigenvalues as
a function of the far-field slope b, dashed lines indicate the real parts of complex conjugate
pairs.

the steady-profile similarity solutions Z(p) yields the linearized eigen-
modes; for spatial translations z -> Z + E.

and for time-shifts, t -> t + e,

These eigenmodes have algebraic behavior in the far-field and will not
occur in the expansion of strongly localized initial data. The stability of
these symmetry modes, in contrast to the results in Section 5 before pinch-
off, shows that the significance of errors in the assumed values for the criti-
cal position and time (zc, t,.) decreases as time increases after pinchoff
[WB98].

The uniqueness and stability of the after-pinchoff similarity solutions
Z(p) for each cone-angle p = cot-1(b) strongly suggests that there is a
unique local continuation of the solution through the topology transition.

7. CONCLUSIONS

In this paper we examine the dynamics of solid filaments evolving via
surface diffusion. We use a well-known model in which the normal velocity
at the surface is proportional to the Laplacian of the mean-curvature
[CT94]. This flow preserves the volume of the solid while minimizing sur-
face area, corresponding to a minimization of surface energy. Cylindrical
filaments are unstable to long-wave perturbations, analogous to the
Rayleigh instability of fluid dynamics. This instability eventually lead to a
conically self-similar pinchoff, leading to a loss of regularity and suggesting



a topological transition [CFM96, CFM95]. A plausible continuation after
this pinchoff is that the cylinder is replaced by a chain of isolated spheres.

Section 2 related surface diffusion evolution to the problem of volume-
constrained surface area minimization. We show that the linear stability of
surface diffusion equilibria is equivalent to classifying the nature of the
extrema for the capillary minimization problem. For axisymmetric equi-
libria, the only stable surfaces (where we restrict ourselves to single-valued
non-zero radii) on a periodic interval are cylinders whose length is less
than 2n times their radius; this is exactly the Rayleigh stability criterion as
can be seen through the analogy with the capillary minimization problem.
A family of unstable axisymmetric surfaces, Delaunay unduloids, exist
which play a role in the dynamics. Through the analogy to capillary mini-
mization, stability of equilibria can be determined by considering a second-
order, self-adjoint operator as opposed to the fourth-order linearized surface
diffusion operator. The connection to capillary minimization can be exploited
for other geometries; for example, McCallum et al considered the stability
of lines on an impermeable substrate [WMD97] and Wong et al consider
the stability of substrates with catenoidal holes [ WMD97]. This connection
should also apply to the triply periodic family of gyroids, constant mean
curvature surfaces recently constructed by Grosse-Brauckmann [GB97],
an interesting point of study for surface diffusion in this geometry.

Section 3 discussed the nonlinear dynamics near axisymmetric equi-
libria. A combination of the stability results above, bifurcation theory and
numerical simulation, gave a dynamical picture for the evolution of nearly
cylindrical initial conditions on periodic intervals. For Rayleigh unstable
intervals, perturbed cylinders decrease surface area until a pinchoff occurs
[CFM96]. As the length of the interval decreases through the instability
threshold, a branch of unstable Delaunay unduloids bifurcate from the
cylinder. Bifurcation theory shows that locally this unstable solution and its
stable manifold form the boundary between the basin of attraction of the
stable cylinder and the basin of attraction of the topological pinchoff.
Numerically we establish that this picture qualitatively remains the same
for shorter intervals until the unduloid solution ceases to exist. Solutions
evolve toward the cylinder (when it is a stable surface area minimizer) or
towards pinchoff in an attempt to form a sphere, which is always a surface
area minimizer. We showed that below the threshold for Rayleigh
instability of the cylinder, there exists a regime where the cylinder is finite-
amplitude unstable to perturbations that will lead to pinchoff. Above the
critical wavelength for Rayleigh instability there may be additional dynamics
that interact with the formation of singularities. It would be interesting to
search for coarsen instabilities or competition between different global solu-
tions leading to different critical times and positions for pinchoff.
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Finite-time pinchoff singularities and changes in topology occur in
many problems in continuum mechanics and differential geometry. Many
studies of this phenomena in fluid problems were carried out recently at the
University of Chicago, in particular the examination of thin films flows
under the direction of Leo Kadanoff [CDG+93, DGKZ93, BBDK94].
These works stimulated new interest in formation of singularities through
self-similar dynamics in higher order problems and generated valuable new
analytical and numerical techniques for their study. Our work continues
along this program. For the axisymmetric surface diffusion problem, we
showed, in Section 4, that the similarity solution found by Wong et al.
[WMVD98] is the first of a countably infinite set of symmetric similarity
solutions. This kind of structure was recently observed by Brenner et al.
[BLS96] for similarity solutions describing droplet pinchoff. Moreover, the
first solution is the only one observed numerically. We found numerical
agreement with the similarity solution over many decades of data, in the
spirit of [BB95, Ber96, BBDK94, Ber95]. Some interesting theoretical
questions arise from this study. Can one prove that the set of similarity
solutions constructed numerically here are the only similarity solutions
with this scaling? Also, to date, no one has proved rigorously that finite-
time pinchoff occurs in this problem.

In Section 5, we developed a stability theory for self-similar solutions.
The linear stability of the similarity solutions can be related to an eigen-
value problem in the similarity variables. The temporal and spatial transla-
tion symmetries of the problem give rise to anomalous positive eigenvalues
in the spectrum; when the symmetries are properly accounted for, we find
that the first similarity solution is the only stable solution and that the nth
solution has 2(n – 1) unstable directions. This result accounts for only the
first solution being observed. We verify the stability theory by investigating
the evolution of an unstable similarity solution numerically. In addition, we
compute the stability of the solution to non-axisymmetric perturbations;
once the additional translation and rotation symmetries are accounted for,
we conclude that the first solution is also the only solution stable to non-
axisymmetric perturbations. We believe the stability theory developed here
provides a template for examining linear stability in the setting of self-
similarity and determining selection when multiple similarity solutions
exist.

In Section 6, we consider the existence and stability of solutions after
pinchoff. We find a continuous family of stable similarity solutions param-
etrized by the far-field cone angle. These results suggest that the continua-
tion after pinchoff is unique.

While the surgery technique used by Coleman, Falk, and Moakher
[CFM95] allows them to transition through pinchoff, it does not address
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the issue of uniqueness of continuation. Eggers' [Egg98] study of the
coalescence of spheres uses a similar ad hoc regularization and symmetry
to continue the evolution past subsequent coalescences of the interfaces.
The continuation of the surface through topological transition has been
widely studied for the related problem of motion by mean curvature. Evans
and Spruck [ES91] and Chen, Giga and Goto [CGG91] showed that
mean curvature motion has a unique continuous viscosity solution. Instead
of considering the motion of a single surface, they embed the initial condi-
tion as a level-set of a function in space. They then introduce a viscous dif-
fusion term, and show the evolution of the level-set equation is unique and
smooth in the limit of vanishing viscosity. Altschuler, Angenent and Giga
[AAG95] and Soner and Souganidis [SS93] both studied the regularity of
bounded axisymmetric surfaces shrinking via mean-curvature flow. They
showed (with some technical restrictions) that the unique viscous solution
is smooth except at a finite number of critical times at which pinchoff
occurs, and that the pinchoff occurs in the manner described by Huisken
[Hui90], in which a rescaled solution approaches a cylinder.

Because motion via surface diffusion is fourth-order in space, the tools
used for the second-order parabolic system arising from mean-curvature
motion are generally insufficient (see the discussion in [CT94]). One
possible method of defining a unique continuation is again to equate the
motion of the surface with the level-set of a function defined throughout
space. Cahn, Elliot, and Novick-Cohen [CENC96] presented a Cahn-
Hilliard model with a degenerate mobility that formally yields motion by
the Laplacian of mean-curvature for its zero level set in a diffusive bound-
ary layer limit. Elliot and Garcke [EG96] proved the existence of weak
solutions for this class of Cahn-Hilliard equations. A challenging problem
for further study would be to use this formulation to analyze pinchoff,
intersection of interfaces, or any other loss of regularity issues that arise in
motion via surface diffusion. Clearly surface diffusion is a problem with a
rich and complex set of dynamics that we have only just begun to under-
stand.

APPENDIX. NUMERICAL METHOD FOR SIMULATIONS OF
PINCHOFF

Here we describe the numerical method used to perform self-similar
adaptive mesh refinement calculations of the initial pinchoff singularity.
Previous numerical work on this problem includes that of [LC89, BT94,
CFM96, CFM95].

We used a finite difference spatial discretization of Eq. (3.4) in which
the computational domain is divided into intervals with endpoints marked
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by the nodes zl<z2< ··· <zk. The function r(z, t) is approximated by its
computed value rj

i at the node z, at time tj. The mean curvature H of the
interface is approximated at each node z, by the finite difference
approximation

where

Expression (A.1) is a finite difference discretization of the exact differential
for the mean curvature (3.6)

This approximation works very well across changes in grid size except near
points where rz gets small. There, round-off error introduces some
instabilities into the code. This problem is easily resolved by replacing
(A.1) by an asymptotic approximation (with rz as the small parameter) for
numerical values of rz below a threshold.

The PDE is then solved implicitly on each time-step using a backward
Euler method:

where the flux terms f and v are defined by



The time-step is chosen adaptively, based on a need to satisfy an error
tolerance and a maximum relative decrease in the minimum of the solution.
The coupled Eqs. (A.2)-(A.3) are solved using a Newton iteration. The
actual code is adapted from ones used to compute lubrication type equa-
tions and MKS equations in [Ber96, BBDK94, BB95, BP98].

The initial grid is uniform in space. The grid is adaptively refined in
a self-similar fashion using the technique outlined in [Ber96] for lubrica-
tion-type equations. The main idea is that when rmin = min,(r,) goes below
some threshold local grid refinement is performed by subdividing a fixed
number of cells near the node zt corresponding to rmin. The mesh is then
repeatedly refined in this fashion whenever the minimum goes below the
next threshold. Some advanced knowledge of the relationship between the
characteristic length-scale of the self-similarity and rmin is needed in order
to effectively resolve the structure. In this case, we know rmin ~ / where / is
the characteristic lengthscale of the pinch region. So, if we subdivide by a
factor of two each time, then the regridding must be repeated whenever rmin

decreases by a factor of two. When the mesh is subdivided new values of
r and v are computed via linear interpolation for v and linear interpolation
of second differences for r. Immediately after remeshing, the adaptive time-
step is cut by a factor of 20 in order to smooth high frequency noise
induced by the regridding. For more details about the adaptive mesh
refinement, the reader is referred to [Ber96].
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the discrete approximation of the volume
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